Abstract

Heterogeneous fluorescence intensity decays of tryptophan in proteins are often rationalized using a model which proposes that different rotameric states of the indole alanyl side-chain are responsible for the observed fluorescence lifetime heterogeneity. We present here the study of a mutant of carp parvalbumin bearing a single tryptophan residue at position 102 (F102W) whose fluorescence intensity decay is heterogeneous and assess the applicability of a rotamer model to describe the fluorescence decay data. We have determined the solution structure of F102W in the calcium ligated state using multi-dimensional nuclear magnetic resonance (NMR) and have used the minimum perturbation mapping technique to explore the possible existence of multiple conformations of the indole moiety of Trp102 of F102W and, for comparison, Trp48 of holo-azurin. The maps for parvalbumin suggest two potential conformations of the indole side-chain. The high energy barrier for rotational isomerization between these conformers implies that interwell rotation would occur on time-scales of milliseconds or greater and suggests a rotamer basis for the heterogeneous fluorescence. However, the absence of alternate Trp102 conformers in the NMR data (to within 3 % of the dominant species) suggests that the heterogeneous fluorescence of Trp102 may arise from mechanisms independent of rotameric states of the Trp side-chain. The map for holo-azurin has only one conformation, and suggests a rotamer model may not be required to explain its heterogeneous fluorescence intensity decay. The backbone and Trp102 side-chain dynamics at 30 °C of F102W has been characterized based on an analysis of 15N NMR relaxation data which we have interpreted using the Lipari-Szabo formalism. High order parameter ( S 2) values were obtained for both the helical and loop regions. Additionally, the S 2 values imply that the calcium binding CD and EF loops are not strictly equivalent. The S 2 value for the indole side-chain of Trp102 obtained from the fluorescence, NMR relaxation and minimum perturbation data are consistent with a Trp moiety whose motion is restricted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.