Abstract

Collagen with a multi-hierarchical architecture exhibits powerful biological performance, thus being developed in biomedical applications as a processing building block. The isolated collagen after extraction from biological tissues can be processed into various forms such as fibrils, scaffolds, membranes, microspheres, hydrogels, and sponges for further use in specific applications. This review briefly discusses the multi-hierarchical structure, powerful biological performances, extraction, and processing approaches of collagen as a natural biomaterial. The processing of collagen including dissolution, self-assembly, cross-linking, and electrospinning, is discussed to show more feasibility for specific applications of collagen composite biomaterials. Further emphasis is directed towards the biomedical applications of drug and gene delivery, as well as tissue repair involving bone, cartilage, vascular, and corneal, along with wound healing. Additionally, there is a focus on the development of flexible sensors and electronic skins (e-skins). Furthermore, the potential challenges and perspectives for the development of collagen-based biomaterials are proposed. In short, collagen-based biomaterials are expected to facilitate sustainable development and the next generation of advanced biomaterial applications.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.