Abstract

Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P63/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr1−xBax)2FeSbO6. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr2FeSbO6 phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P63/mmc structure of the other end member Ba2FeSbO6 back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature all work towards the same direction in the (Sr1−xBax)2FeSbO6 system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.