Abstract
The steady-state rheological stress, critical strain capacity, structure evolution dynamics, and energy dissipation during dynamic recrystallization of Ni60Ti40 alloy were characterized through single-pass isothermal compression experiments at 980–1070 °C and strain rate of 5 × 10−3 - 5 s−1. The underlying structural evolution mechanism was revealed via microstructure characterization. The critical strain capacity of Ni60Ti40 during dynamic recrystallization decreased and the structure transformation volume fraction increased with the rise of deformation temperature or the decline of strain rate. The critical power dissipation rate upon dynamic recrystallization was 0.15. At low temperature and high strain rate, the structure evolution was dominated by geometrical dynamic recrystallization. At high temperature and low strain rate, non-continuous dynamic recrystallization was dominant. The nucleation mechanism was grain boundary slip induced by dislocation motion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.