Abstract

The influence of B-site deficiency on the stability of electrically induced long-range ferroelectric order of the stoichiometric Bi0.5+xNa0.5−xTi1−0.5x□0.5xO3 (BNT-xVTi) (“□” denotes vacancies) ceramics is studied. The depolarization and ferroelectric to relaxor transition are identified as separate and discrete processes in BNT-based materials. For BNT-0.02VTi, the resonance and anti-resonance peaks on dielectric permittivity-frequency curves indicate dominating ferroelectric phase at room temperature. The depolarization temperature, determined by thermally stimulated depolarization current, is ~ 65 °C. However, the ferroelectric to relaxor transition temperature is absent, as no distinct frequency-independent anomalies for the dielectric permittivity exist. This depolarization process can be ascribed to nanoscale ferroelectric domain at room temperature for BNT-0.02VTi, which is induced by chemical disorder and strong random field as VTi generated. Hence, the results imply that the B-site deficiency in BNT is a very effective route to tailor the stability of electrically induced long-range ferroelectric order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.