Abstract

Calculating the structure equation of a chain is important to represent the position of the end link on the chain. Furthermore, the structure equation helps to determine the constraint manifold of the chain. The constraint manifold satisfies to make geometric interpretations about the form that is obtained. What is more, the constraint forced on the positions of the end link by the rest of the chain is represented by the manifold. In Lorentz space, the structure equations change according to the causal characters of the first link. In this paper, we attain the structure equations of a planar open chain in terms of the causal character of the first link in this space. Later, the constraint manifolds of the chain by using these equations are given. Some geometric comments about these manifolds are explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.