Abstract

Determining the existence of any direct spectral relationship between the far-field scattering properties and the near-field Raman-enhancing properties of surface-enhanced Raman spectroscopy (SERS) substrates has been a challenging task with only a few significant results to date. Here, we prove that hot spot dominated systems show little dependence on the far-field scattering properties because of differences between near- and far-field localized surface plasmon resonance (LSPR) effects as well as excitation of new plasmon modes via a localized emitter. We directly probe the relationship between the near- and far-field light interactions using a correlated LSPR-transmission electron microscopy (TEM) surface-enhanced Raman excitation spectroscopy (SERES) technique. Fourteen individual SERS nanoantennas, Au nanoparticle aggregates ranging from dimers to undecamers, coated in a reporter molecule and encased in a protective silica shell, were excited using eight laser wavelengths. We observed no correlation between the spectral position of the LSPR maxima and the maximum enhancement factor (EF). The single nanoantenna data reveal EFs ranging from (2.5 ± 0.6) × 10(4) to (4.5 ± 0.6) × 10(8) with maximum enhancement for excitation wavelengths of 785 nm and lower energy. The magnitude of maximum EF was not correlated to the number of cores in the nanoantenna or the spectral position of the LSPR, suggesting a separation between near-field SERS enhancement and far-field Rayleigh scattering. Computational electrodynamics confirms the decoupling of maximum SERS enhancement from the peak of the scattering spectrum. It also points to the importance of a localized emitter for radiating Raman photons to the far-field which, in nonsymmetric systems, allows for the excitation of radiative plasmon modes that are difficult to excite with plane waves. Once these effects are considered, we are able to fully explain the hot spot dominated SERS response of the nanoantennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.