Abstract
Structural deep clustering involves the use of neural networks for fusing semantic and structural representations for clustering tasks, and it has been receiving increasing attention. In some pioneering works, auto-encoder (AE)-specific representations were integrated with a graph convolutional network (GCN)-specific representation by delivering semantic information to the GCN module layer-by-layer. Although promising performance has been achieved in various applications, we observed that a vital aspect was overlooked in these works: the structural information may vanish in the learning process because of the over-smoothing problem of the GCN module, leading to non-representative features and, thus, deteriorating clustering performance. In this study, we address this issue by proposing a structure enhanced deep clustering network. The GCN-specific structural data representation is enhanced and supervised by its structural information. Specifically, the GCN-specific structural data representation is strengthened during the learning process by combining it with a structure enhanced semantic (SES) representation. A novel structure enhanced AE, named the weighted neighbourhood AE (wNAE), is employed to learn the SES representation for each data sample. Finally, we design a joint supervision strategy to uniformly guide the simultaneous learning of the wNAE and GCN modules and the clustering assignment. Experimental results for different datasets empirically validate the importance of semantic and neighbour-wise structure learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.