Abstract

Abstract Iron-based chalcopyrite materials have diverse applications in solar cells, spintronic, thermoelectric devices, LEDs and medical sciences. In this report we have studied structure, electronic and optical properties of chalcopyrite-type nano-cluster XFeY2 (X=Cu, Ag, Au; Y=S, Se, Te) systematically by using Density Functional Theory (DFT). Our computed HOMO-LUMO energy gap of XFeY2 is in the range of 1.568–3.982 eV, which endorses its potential application in optoelectronic devices and solar cells. The result shows that chalcopyrite-type material AuFeS2 having a star-type structure with point group C2v and sextet spin multiplicity, is the most stable cluster with HOMO-LUMO energy gap of 3.982 eV. The optical properties viz. optical electronegativity, refractive index, dielectric constant, IR and Raman activity of these nano-clusters are also investigated. The result exhibits that HOMO-LUMO energy gap of XFeY2 along with optical electronegativity and vibrational frequency decreases from S to Se to Te, whereas refractive index and dielectric constant increases in the reverse order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call