Abstract

Both single crystals and pure polycrystalline samples of three new quaternary alkali metal molybdenum selenites, Na2Mo2O5(SeO3)2, K2Mo2O5(SeO3)2, and Rb2Mo3O7(SeO3)3, have been synthesized through hydrothermal and solid-state reactions using A2CO3 (A = Na, K, and Rb), MoO3, and SeO2 as reagents. The frameworks of all three materials consist of both families of second-order Jahn-Teller distortive cations, i.e., the d(0) cation (Mo(6+)) and the lone pair cation (Se(4+)). Although the extent of framework distortions and the resulting occupation sites of alkali metal cations are dissimilar, Na2Mo2O5(SeO3)2 and K2Mo2O5(SeO3)2 exhibit similar three-dimensional networks that are composed of highly asymmetric Mo2O11 dimers and SeO3 polyhedra. Rb2Mo3O7(SeO3)3 reveals a two-dimensional structure that is built with Mo3O15 trimers and SeO3 intralayer linkers. Close structural examinations suggest that the structure-directing effect of alkali metal cations is significant in determining the framework distortions and the dimensions of the molybdenum selenites. UV-vis diffuse reflectance and infrared spectroscopy, thermogravimetric analyses, and ion-exchange reactions are reported, as are out-of-center distortion and dipole moment calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call