Abstract

Structure-guided bioengineering enzymes has been an efficient strategy to obtain biocatalyst with desirable properties. In this study, the cold-adapted esterase from Pseudomonas sp. (CPE) was optimized through bioinformatic-based structured-guided bioengineering on lid1 region. Substitutions of non-conserved Q55 led to noticeable increase in hydrolysis without sacrificing enzyme thermostability, activating effects of Ca2+ and organic solvents. Compared to the wild type, both of Q55V and Q55N among the constructed variants exhibited about a 2.0-fold and 6.5-fold higher hydrolytic activity toward short-chain and long-chain substrates, respectively. In contrast, lid swapping with the lid of Thermomyces lanuginosus lipase reduced the activity and thermostability of CPE. Catalytic kinetics revealed that substitution of Q55 with Y, V, N and R enhanced the substrate affinity of CPE. Hydrolysis by Q55V remarkedly enriched the characteristic flavor components of single cream. The study sheds light on structure-guided bioengineering of lid tailoring cold-adapted esterases with desired catalytic performance to meet the demand from biotechnological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call