Abstract

La2/3Cu3Ti4O12 (LCTO) precursor powders were synthesized by the sol–gel method. Effect of sol conditions and sintering process on microstructure and dielectric properties of LCTO powders or ceramics were investigated systematically. The optimum sol conditions for the synthesis of precursor powders were as follows: the Ti4+ concentration of 1.00 mol/L, the molar ratio of water and titanium of 5.6:1 and the sol pH of 1.0, respectively. After sintered at 1105 °C for 15 h, the LCTO ceramics exhibited more homogeneous microstructure, much higher dielectric constant (ca 09–1.6 × 104) and lower dielectric loss (ca 0.057). The higher dielectric constant of the LCTO ceramics might be due to the internal barrier layer capacitor effect. The LCTO ceramics showed two kinds of conductivity activation energy for grain boundary conductivity from complex impedance analysis. The transition temperature of two activation energy values occured between 170 and 210 °C. The temperature range of 170–210 °C was critical pseudocritical region of the dielectric constant, dielectric loss and activation energy. Furthermore, it was concluded that the grain boundary play an important role for electrical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call