Abstract

For the cure process of tetrafunctional epoxy resin/polysulfone(EP/PSF) blends, we investigated the effect of cure temperature and blend composition on the phase separation behavior by light scattering and the structure development during cure by an optical microscope. The EP/PSF blend without the curing agent was shown to exhibit an LCST-type phase behavior (LCST = 241°C ). At the early stage of curing, the EP/PSF blend was homogeneous at the cure temperature. As the cure reaction proceeded, the blend was thrust into a two-phase regime by the LCST depression caused by the increase in a molecular weight of the epoxy-rich phase, and the phase separation took place via a spinodal decomposition ( SD ) or nucleation and growth (NG) mode, depending on the blend composition and the cure temperature. When cured isothermally at 220°C, the blend exhibited a sea-island morphology formed via the NG mode below 5 wt % PSF content, while the SD mode prevailed above 20 wt % PSF content. At the intermediate composition range, combined morphology with both sea-island and cocontinuous structure was observed. On the other hand, by lowering the cure temperature and/or increasing the content of PSF component, a two-phase structure with a shorter periodic distance was obtained. It seems that the rate of the phase separation is considerable reduced, while that of the cure reaction is not as much.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.