Abstract
Abstract The structure of an intermediate form of tin oxide was investigated by precession electron diffraction. The results support a revised version of a layered, vacancy-ordered structure for Sn3O4 proposed in the preceding literature. The lattice parameters were found to be consistent with a monoclinic cell which is a distorted superlattice of the cassiterite structure. Zero-order Laue zone (ZOLZ) Patterson maps, phased projections and phases measured from a [001] first-order Laue zone (FOLZ) conditional Patterson map all support the proposed modification to the tin coordinates over the unmodified form. The results of kinematical refinement were not satisfactory, although weak features found in the Patterson maps were consistent with the oxygen atoms being located close to the previously proposed positions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.