Abstract

Outer membrane protein biogenesis is a fundamental and essential process in all Gram-negative bacteria. The key players conducting this process are organized in the β-barrel assembly machinery (BAM) complex. This complex has recently attracted a lot of attention due to its importance in cell wall generation, maintenance, and the fascinating yet partially unknown mechanism. The currently best studied example is the BAM complex from E. coli which comprises five proteins, BamA-BamE, two of which, BamA and BamD, are essential for cell survival. Four of the complex proteins, BamB-BamE, are lipoproteins and are attached to the outer membrane via N-terminal lipid anchors. Two of them, BamB and BamD, comprise protein folds known to mediate protein-protein interactions through WD40 and TPR domains, respectively. Structures of BamB to BamE have been determined using X-ray crystallography, NMR and SAXS techniques. Details on protein preparation, crystallization, data acquisition, and determination of structures are given here along with the brief summary of the currently available structural Bam protein repertoire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.