Abstract

Structure determination at high resolution is still a challenge for membrane proteins in general, but in particular for secondary transporters due to their highly dynamic nature. X-ray structures of ten secondary transporters have recently been determined, but a thorough understanding of transport mechanisms necessitates structures at different functional states. Electron cryo-microscopy of two-dimensional (2D) crystals offers an alternative to obtain structural information at intermediate resolution. Electron crystallography is a sophisticated way to study proteins in a natural membrane environment and to track conformational changes in situ. Furthermore, basic interactions between protein and lipids can be investigated. Projection and 3-dimensional maps of six secondary transporters from different families have been determined by electron crystallography of 2D crystals at a resolution of 8 Å and better. In this review, we give an overview about the principles of 2D crystallization, in particular of secondary transporters, and summarize the important steps successfully applied to establish and improve the 2D crystallization of the high-affinity glycine betaine uptake system from Corynebacterium glutamicum, BetP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call