Abstract

The rotationally resolved S1<--S0 electronic origins of several deuterated resorcinol rotamers cooled in a molecular beam have been recorded. An automated assignment of the observed spectra has been performed using a genetic algorithm approach with an asymmetric rotor Hamiltonian. The structures of resorcinol A and resorcinol B were derived from the rotational constants of twenty deuterated species for both electronic states. The lifetimes of different resorcinol isotopomers in the S1 state are also reported. As is the case for phenol, these lifetimes mainly depend on the position of deuteration. A nearly perfect additivity of the zero-point energies after successive deuterations in resorcinol rotamers has been discovered and subsequently used in the full assignment of the previously reported low-resolution spectra of deuterated resorcinol A. An analogous spectrum is also predicted for the resorcinol B rotamer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.