Abstract

Seven naphthalimide derivatives (NDP1–NDP7) with different substituents have been designed as versatile photoinitiators (PIs), and some of them when combined with an iodonium salt (and optionally N-vinylcarbazole) or an amine (and optionally chlorotriazine) are expected to exhibit an enhanced efficiency to initiate the cationic polymerization of epoxides and the free radical polymerization of acrylates under different irradiation sources (i.e., the LED at 385, 395, 405, 455, or 470 nm or the polychromatic visible light from the halogen lamp). Remarkably, some studied naphthalimide derivative based photoinitiating systems (PIS) are even more efficient than the commercial type I photoinitiator bisacylphosphine oxide and the well-known camphorquinone-based systems for cationic or radical photopolymerization. A good efficiency upon a LED projector at 405 nm used in 3D printers is also found: a 3D object can be easily created through an additive process where the final object is constructed by coating down suc...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call