Abstract

A novel silicon based dual-mass vibrating tuning fork vibratory gyroscope (TFG) with differential capacitor structure is designed in this paper. the U-shaped beam is adapted to connecting the two decoupling movement of the framework structure in order to achieve the independent of the movement of drive direction and sense direction. The TFG structure is also optimized to further reduce the mechanical coupling of the device. The drive combs are designed on the mass, while the sense combs are designed on the frame. All the combs in this gyroscope are dominated by slide-film air damping in order to lower the air damping. This gyroscope is designed to obtain robust operation against variations under atmospheric pressure condition. The TFG is tested at atmospheric pressure with a sensitivity of 17.8mV/◦/s and a linearity of 99.989%, capacitance structure sensitivity is 21.5αf/◦/s with an equivalent noise angular rate of 0.028◦/s/Hz1/2, respective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.