Abstract

Coupled with anionic and cationic redox chemistry, Li-rich/excess cathode materials are prospective high-energy-density candidates for the next-generation Li-ion batteries. However, irreversible lattice oxygen loss would exacerbate irreversible transition metal migration, resulting in a drastic voltage decay and capacity degeneration. Herein, a metastable layered Li-excess cathode material, T2-type Li0.72[Li0.12Ni0.36Mn0.52]O2, was developed, in which both oxygen stacking arrangement and Li coordination environment fundamentally differ from that in conventional O3-type layered structures. By means of the reversible Li migration processes and structural evolutions, not only can voltage decay be effectively restrained, but also excellent capacity retention can be achieved upon long-term cycling. Moreover, irreversible/reversible anionic/cationic redox activities have been well assigned and quantified by various in/ex-situ spectroscopic techniques, further clarifying the charge compensation mechanism associated with (de)lithiation. These findings of the novel T2 structure with the enhanced anionic redox stability will provide a new scope for the development of high-energy-density Li-rich cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.