Abstract

A controlled wrinkled structure is a simple and effective approach to achieve unique properties and has been widely used in flexible materials. In this study, we reported a substrate prestrain method for fabricating wrinkle-structured Zr52Ti34Nb14 multiple-basis-element (MBE) alloy films as biocompatible materials. Variations in the film thickness and substrate prestraining enabled a precise control of the amplitude and wavelength of the wrinkled structures, ranging from micrometers to nanometers. Moreover, owing to the flexibility of the wrinkled structures, the wrinkle-structure pattern could be adjusted by simply relaxing or further stretching of the substrate, leading to dynamically tunable transmittance and wetting behaviors. This result not only reveals Zr52Ti34Nb14 MBE alloy films as a potential flexible material, but also provides a new structural design approach for other MBE alloy systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call