Abstract
Based on conventional vane hydraulic damper, a new vane magnetorheological fluid damper (MRFD) is designed according to “fail-safe” principle. Limited by structure and space, the magnetic circuit design and optimization is the difficulty in alteration, as well as the cornerstone of MRFD performance. In the process of MRFD design, three-dimensional nonlinear finite element analysis of magnetic field is applied based on ANSYS, and find that the magnetic core becomes the bottleneck of magnetic circuit. Windings installed in a constrained volume are optimized by simulation method so that the magnetic induction of MRF in damping gap is obviously improved. Simulation result indicates that the MRF leaking from non-preset gap may be controlled, which can enlarge the damping adjustable range of designed MRFD and enhance its reliability that the special vehicles require.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.