Abstract

(R)-Octopamine (OA), a major invertebrate biogenic amine, plays an important role in a wide variety of physiological processes as a neurohormone, neuromodulator, and neurotransmitter in insects. OA receptors (OARs) are class A G protein-coupled receptors that specifically bind OA to activate downstream signaling cascades by coupling to G proteins and presumably other regulatory proteins. These receptors are broadly classified as α- and β-adrenergic-like OARs (α- and β-ALOARs). OARs are considered important targets of insecticides and acaricides. In the present study, we examined the actions of an array of 13 heterocyclic OAR agonists with the moieties that correspond to the phenyl group and the basic nitrogen atom of OA on α- and β-ALOARs from the silkworm (Bombyx mori) and the signaling pathways activated through these actions. The results indicated that these compounds display structure-dependent receptor subtype selectivity and G protein subtype preference, underscoring the need to determine which subtype and signaling pathway mediates toxicologically relevant effects for the efficient discovery of novel pest control chemicals. The results of insecticidal assays using B. mori larvae suggested that the activation of signal transduction pathways via α-ALOARs might be mainly responsible for the toxicological effects of the heterocycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call