Abstract
This paper gives an overview of structure-dependent intergranular deformation and fracture of metallic bicrystals and polycrystals at high temperatures. Structure-dependent grain boundary sliding and migration during high temperature deformation are discussed in connection with grain boundary structural change by the interaction with lattice dislocations and by intrinsic and extrinsic grain boundary structural transformation due to temperature and segregation, respectively. “Grain boundary engineering” for improvement in creep strength, development of superplasticity and control of oxidation-assisted intergranular brittleness are introduced which were successfully achieved by engineering the grain boundary microstructures characterized by the grain boundary character distribution (GBCD), the grain boundary connectivity and grain size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.