Abstract

The in-plane optical phonons around 200meV in few-layer graphene are investigated utilizing infrared absorption spectroscopy. The phonon spectra exhibit unusual asymmetric features characteristic of Fano resonances, which depend critically on the layer thickness and stacking order of the sample. The phonon intensities in samples with rhombohedral (ABC) stacking are significantly higher than those with Bernal (AB) stacking. These observations reflect the strong coupling between phonons and interband electronic transitions in these systems and the distinctive variation in the joint density of electronic states in samples of differing thickness and stacking order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call