Abstract

The structure of proanthocyanidins extracted from bird cherry fruits was characterized by HPLC-ESI/MS2 and MALDI-TOF/MS analyses, and their subunits and mean degree of polymerization (mDP) were investigated by thiolysis reaction, and the inhibition activity against starch hydrolases measured using the high-throughput turbidity assay. This is the first mass spectrometric analysis to thoroughly investigate the structure and mDP of proanthocyanidins in bird cherry fruits. Bird cherry proanthocyanidins were categorized as oligomeric proanthocyanidins (mDP = 5.6), which constituted of (epi)gallocatechins and (epi)catechins. The proanthocyanidins increased from a (epi)gallocatechin-[(epi)catechin]3 tetramer to a (epi)gallocatechin-[(epi)catechin]11 dodecamer through the addition of one (epi)catechin with both A-type and B-type linkages. The proanthocyanidins had potent α-amylase and α-glucosidase inhibition activities with IC50 values of 0.19 ± 0.01 µg/mL and 0.18 ± 0.006 µg/mL, comparing favorably to commercial drug acarbose. Bird cherry oligomeric proanthocyanidins are a promising starch hydrolase inhibitor for the application of potential functional food components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.