Abstract

The hydrological and mechanical properties of granitic residual soils can be significantly altered by periodical wetting and drying (W-D) cycles. The soil structure degradation induced by W-D cycles can lead to soil mass failure and collapsing gully erosion in granitic hilly slopes in south China. However, limited attempts have been made at a comprehensive investigation of the effects of W-D cycles on the structure degradation of granitic residual soils, especially at the pedon scale. The purpose of this paper is to investigate the structural degradation of granite soils induced by W-D cycles and explore its potential influence on the development of collapsing gully erosion. The granitic soil properties, including hydraulic properties, shear strength, and disintegration characteristics, were performed after W-D cycles. The results indicated that the W-D cycles altered the soil pore structure, leading to variations in soil hydraulic properties. Specifically, with increasing alternate W-D cycles, the initial saturated water content and residual water content decreased, while the saturated hydraulic conductivity increased. Meanwhile, increasing W-D cycles contributed significantly to variations in cohesion and internal friction strength by decreasing the shear strength variables, especially the soil cohesion strength. Correspondingly, soil disintegration was increased during W-D cycles. Furthermore, most degradation of soil structure was recorded within the first two cycles of W-D. The obtained results indicate that the W-D cycles weaken soil structure, increase rainwater infiltration, decrease soil shear strength and disintegration resistance, and accelerate soil erosion. A vicious cycle of granitic slope failure induced by W-D cycles is eventually formed. This study provides useful information about the mechanism of soil mass failure and collapsing gully erosion in granitic hilly slopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call