Abstract
Porous cordierite ceramics (PCCs) with stable 3D microstructures were prepared by Pickering emulsion technique using sucrose as a porogen. The microstructural and mechanical properties could be adjusted by varying O/S ratios, sintering temperature, and sucrose content. The formation of the spherical structure was due to the broken oil bubbles. The appearance of cordierite and the concurrent consumption of sucrose were responsible for the observation of gradient pore structure. When the O/S ratio was 2, the pore-structure-controlled PCCs with cordierite as the main phase was obtained after sintering at 1300 °C. With the addition of 30 wt.% of sucrose, the obtained PCCs possessed high solid content of 45 vol.%, the porosity of 90.83%, the compressive strength of 6.09 MPa, and the optimized thermal conductivity of 0.4794 W/m.K. Compared with the predecessors’ research results, the as-prepared precursor of PCCs with sucrose content had the lowest initial Zeta potential without adjusting the pH to ensure the stable suspension. Our results showed that the addition of sucrose not only acts as a solvent to increase the solid content, but also acts as a pH modifier to maintain precursor stability, which enables the increase in compressive strength. In this work, via the scenario of “oil droplet” 3D accumulation, the stable and orderly spatial arrangement of the micro-emulsion system was successfully realized to obtain the structure-controlled PCCs by controlling the precursor conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.