Abstract
The paper deals with the study of the effect of the deposition conditions (the bias potential and substrate temperature) on the structure, composition, and physicomechanical characteristics of nanocrystalline films of hafnium diboride and boridonitride formed by the method of nonreactive (in Ar) and reactive (in Ar + N2) HF magnetron sputtering, respectively. The optimal conditions for the deposition of the hafnium diboride coatings with growth texture in plane (00.1) and the best physicomechanical characteristics are deter-mined. It is shown that at a bias potential of ±50 V and a substrate temperature of ∼500°C superstoichiometric highly textured films are formed with a nanohardness of 44 GPa and an elastic modulus of 396 ± 11 GPa. A relation between the composition, structure, and physicomechanical characteristics of the films is found. Reactive sputtering in (Ar + N2) makes it possible to produce amorphous-crystalline films of the composite (HfB2 + BN) that consists of grains of the HfB2 nanocrystalline phase, the spaces between which are filled with the amorphous phase of graphite-like BN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.