Abstract

Pulsed laser deposition (PLD) was employed to grow MoS x –WSe y composite films, where x = 1.18, y = 0.78. Scanning electron micrographs show that the films have a dense granular morphology. Crystallization, d-spacing and hexagonal sheet curvature within the film were studied with X-ray diffraction, electron diffraction and transmission electron microscopy. A predominant hexagonal MoS x phase was formed but contained W and Se, which were most likely present as substituents for Mo and S. There was no evidence for two separate crystalline phases. MoS x –WSe y composite films exhibited a larger expansion along the c-axis (d-spacing between basal planes) than PLD MoS2 and WSe2 films grown by laser ablation of pure targets. The lattice spacing along the a-axis was expanded in comparison to the MoS2 film, and compressed in comparison to the WSe2 film. X-ray photoelectron spectroscopy showed a significant sulfur deficiency, and verified both of S and Se bonding in the film. High-resolution electron microscope images exhibited significant curvatures of the (002) basal planes in the films. The bending behavior of basal planes was explained by S vacancies and Se substitution on the atomic site of S layers. The tribological properties of the composite films were measured in dry and wet conditions using a ball-on-disc tribometer. The reduced friction was correlated with the increased crystallinity and increased separation of basal planes in the composite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.