Abstract

Ethnopharmacological relevancePanax ginseng C. A. Meyer is a traditional Chinese herbal medicine, which has been used in China for more than 2000 years. Its traditional effect of “invigorating vitality” is mainly reflected in anti-fatigue. However, due to the difficulty of identification of polysaccharide structure, there are few reports on homogeneous ginseng polysaccharide, and the molecular mechanism of its anti-fatigue effect remains to be further explored. Aim of the studyIn order to find the homogenous ginseng polysaccharide with the most anti-fatigue effect, this study is for the first time extracted, isolated and structurally identified polysaccharide monomer from Mountain Cultivated Ginseng (MCG). Then the anti-fatigue activity and molecular mechanism were studied. Materials and methodsThe structure of ginseng acidic polysaccharide APS-1 prepared by high performance gel permeation chromatography (HPGPC) was determined by acid hydrolysis/HPLC, methylation/GC-MS and NMR analysis. Anti-fatigue effect was evaluated by exhaustive swimming model, and AMPK axis-related proteins were detected by Western blot. ResultsAPS-1 significantly prolonged fatigue tolerance time, alleviated accumulation of BLA, LDH and BUN, increased activities of SOD and CAT, alleviated oxidative damage caused by MDA, increased activity of CK, regulated glycolysis, and alleviated muscle fiber contraction. The expressions of LKB1, p-AMPK, PGC-1α and Glut4 in muscle were significantly up-regulated. ConclusionsThe anti-fatigue effect of APS-1 was significantly, and the molecular mechanism may be related to the activation of AMPK axis signaling pathway to improve glucose uptake and mitochondrial function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call