Abstract

Abstract The structure characteristics and major controlling factors of platform margin microbial reef reservoirs in the Lower Cambrian Xiaoerbulak Formation in the Aksu area, Tarim Basin were analyzed based on 5 outcrop sections, 162 thin sections, 12 SEM samples, 52 sets of porosity and permeability data. Macroscopically, small-scale microbial reefs form the platform margin. A single microbial reef has several microbial reef progradation complexes, including reef front, fore reef, reef crest, and back reef, but microscopically, they have different kinds of microstructures. The reservoir spaces in the reefs can be divided into microbial structure reservoir space, including fenestral, frame, moldic, and oversized dissolution pores, and non-microbial structure reservoir space, including microcracks and stylolites. The statistical results of porosity and permeability show that in the Yutixi Section, porosity and permeability of the microbial reef reservoirs are generally below 5% and 1.0×10 −3 μm 2 respectively, characteristics of extremely low porosity and permeability reservoirs; while the reef reservoirs in the Sugaitebulake Section have a wide porosity range between 3% and 10%, and permeability range between 0.1×10 −3 μm 2 and 50×10 −3 μm 2 and strong heterogeneity, are low-medium porosity, low-medium permeability reservoirs. This demonstrates different microbial reefs have big differences in physical properties, and even the reservoir in the same reef has obvious heterogeneity. Paleotopography controls the formation of microbial reefs and sedimentation controls the facies distribution and the primary porosity development. Dissolution, controlled by the two former factors, finally decides evolution of reservoir pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.