Abstract
Developing GPCR homology models for structure-based virtual screening requires the choice of a suitable template and refinement of binding site residues. We explored this systematically for the MT2 melatonin receptor, with the aim to build a receptor homology model that is optimized for the enrichment of active melatoninergic ligands. A set of 12 MT2 melatonin receptor models was built using different GPCR X-ray structural templates and submitted to a virtual screening campaign on a set of compounds composed of 29 known melatonin receptor ligands and 2560 drug-like decoys. To evaluate the effect of including a priori information in receptor models, 12 representative melatonin receptor ligands were placed into the MT2 receptor models in poses consistent with known mutagenesis data and with assessed pharmacophore models. The receptor structures were then adapted to the ligands by induced-fit docking. Most of the 144 ligand-adapted MT2 receptor models showed significant improvements in screening enrichments compared to the unrefined homology models, with some template/refinement combinations giving excellent enrichment factors. The discriminating ability of the models was further tested on the 29 active ligands plus a set of 21 inactive or low-affinity compounds from the same chemical classes. Rotameric states of side chains for some residues, presumed to be involved in the binding process, were correlated with screening effectiveness, suggesting the existence of specific receptor conformations able to recognize active compounds. The top MT2 receptor model was able to identify 24 of 29 active ligands among the first 2% of the screened database. This work provides insights into the use of refined GPCR homology models for virtual screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.