Abstract

Blocking the immunosuppressive function of T-cell immunoglobulin mucin-3 (TIM-3) is an established therapeutic strategy to maximize the efficacy of immune checkpoint inhibitors for cancer immunotherapy. Currently, effective inhibition of TIM-3 interactions relies on monoclonal antibodies (mAbs), which come with drawbacks such as immunogenicity risk, limited tumor penetration, and high manufacturing costs. Guided by the X-ray cocrystal structures of TIM-3 with mAbs, we report an in silico structure-based rational design of constrained peptides as potent TIM-3 inhibitors. The top cyclic peptide from our study (P2) binds TIM-3 with a K D value of 166.3 ± 12.1 nM as determined by surface plasmon resonance (SPR) screening. Remarkably, P2 efficiently inhibits key TIM-3 interactions with natural TIM-3 ligands at submicromolar concentrations in a panel of cell-free and cell-based assays. The capacity of P2 to reverse immunosuppression in T-cell/cancer cell cocultures, coupled with favorable in vitro pharmacokinetic properties, highlights the potential of P2 for further evaluation in preclinical models of immuno-oncology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.