Abstract

Thousands of unique mutations in transcription factors (TFs) arise in cancers, and the functional and biological roles of relatively few of these have been characterized. Here, we used structure-based methods developed specifically for DNA-binding proteins to systematically predict the consequences of mutations in several TFs that are frequently mutated in cancers. The explicit consideration of protein–DNA interactions was crucial to explain the roles and prevalence of mutations in TP53 and RUNX1 in cancers, and resulted in a higher specificity of detection for known p53-regulated genes among genetic associations between TP53 genotypes and genome-wide expression in The Cancer Genome Atlas, compared to existing methods of mutation assessment. Biophysical predictions also indicated that the relative prevalence of TP53 missense mutations in cancer is proportional to their thermodynamic impacts on protein stability and DNA binding, which is consistent with the selection for the loss of p53 transcriptional function in cancers. Structure and thermodynamics-based predictions of the impacts of missense mutations that focus on specific molecular functions may be increasingly useful for the precise and large-scale inference of aberrant molecular phenotypes in cancer and other complex diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.