Abstract

Three novel tiazofurin analogues having d-arabino stereochemistry and nitrogen functionalities at the C-2′ position (5–7) have been designed and synthesized in multistep sequences, starting from d-glucose. The known d-xylo stereoisomer of 1 (compound 2) along with two new analogues bearing nitrogen functions at the C-3′ (3 and 4) has also been synthesized from the same sugar precursor. The synthetic sequence consisted of the following three stages: (i) the multistep synthesis of suitably protected pentofuranosyl cyanides, (ii) the construction of ethyl thiazole-4-carboxylate part by cyclocondensation of thus obtained glycofuranosyl cyanides with l-cysteine ethyl ester followed by dehydrogenation, and (iii) the final transformation of the ethyl thiazole-4-carboxylates into the target tiazofurin analogues using the esters ammonolysis. The tiazofurin analogues were evaluated for their antitumour activities in cell-culture-based assays. Compounds 3, 4 (d-xylo) and 7 (d-arabino), showed remarkable antitumour activities, with IC50 values in the range of 4–7 nM. Preliminary structure-activity relationship allowed identification of two analogues with antiproliferative activities exceeding that of the parent compound 1 for several orders of magnitude (e.g. 4: 1354-fold against Raji, 7: 309-fold against K562). Flow cytometry data and Western blot analysis suggested that cytotoxic effects of d-xylo stereoisomers in the culture of K562 cells caused changes in the cell cycle distribution, as well as the induction of apoptosis in caspase-dependent way. The increase of apoptotic cells percentage in treated samples is also confirmed with fluorescent double-staining method. Genotoxicity testing showed that the analogues with the xylo-configuration (2–4) are far less genotoxic than tiazofurin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.