Abstract

Interrupting the embryonic ectoderm development (EED)-H3K27me3 interaction represents a promising strategy to allosterically inhibit polycomb repressive complex 2 (PRC2) for cancer therapy. In this work, we report the structure-based design of new triazolopyrimidine-based EED inhibitors, which structurally feature the electron-rich indole ring at the C8 position. Particularly, ZJH-16 directly binds to EED (HTRF IC50 = 2.72 nM, BLI KD = 4.4 nM) and potently inhibits the growth of KARPAS422 and Pfeiffer cells. In both cells, ZJH-16 is selectively engaged with EED and reduces H3K27 trimethylation levels. ZJH-16 inhibits the gene silencing function of PRC2 in KARPAS422 cells. ZJH-16 possesses favorable pharmacokinetic (PK) profiles with an excellent oral bioavailability (F = 94.7%). More importantly, ZJH-16 shows robust tumor regression in the KARPAS422 xenograft model after oral administration with the tumor growth inhibition reaching nearly 100%. The robust antitumor efficacy and favorable PK profiles of ZJH-16 warrant further advanced preclinical development for lymphoma treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call