Abstract
Six new diphenyl sulfoxide and five new diphenyl sulfones were designed, synthesized, and tested for their inhibition of human and Escherichia coli thymidylate synthase (TS) and of the growth of cells in tissue culture. The best sulfoxide inhibitor of human TS was 3-chloro-N-((3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl)-4- (phenylsulfinyl)-N-(prop-2-ynyl)-aniline (7c) that had a Ki of 27 nM. No sulfone improved on TS inhibition by the previously reported 4-(N-((3,4-dihydro-2-methyl-6-quinazolinyl)methyl)-N-prop-2- ynylamino)phenyl phenyl sulfone (Ki = 12 nM). Nevertheless, one sulfone, 4-((2-chlorophenyl)sulfonyl)-N-((3,4-dihydro-2-methyl-4-oxo-6- quinazolinyl)methyl)-N-(prop-2-ynyl)aniline, was selected, on the basis of its inhibition of both TS and cell growth, for antitumor testing; it gave a 61% increase in life span to mice bearing the thymidino kinase-deficient L5178Y (TK-) lymphoma. A crystal structure of N-((3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl)-4-((2- methylphenyl)sulfinyl)-N-(prop-2-ynyl)aniline complexed with E. coli TS was solved and revealed selective binding of one sulfoxide enantiomer. AMBER calculations showed that the enantioselection was due to asymmetric electrostatic effects at the mouth of the active site. In contrast, a similar crystal structure of the sulfoxide 7c, along with AMBER calculations, indicated that both enantiomers bound, but with different affinities. The side chain of Phe176 shifted in order to structurally accommodate the chlorine of the more weakly bound enantiomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.