Abstract

Given the avid and selective metal binding properties of naturally-occurring metalloproteins, it is possible to exploit these systems in the development of novel sensors, i.e., “biosensors”, for the detection of trace quantities of metal ions. Here, we exploit the high affinity of human carbonic anhydrase II (CAII) for zinc in the detection of nanomolar concentrations of this metal ion by fluorescence anisotropy using a fluorescein-derivatized arylsulfonamide probe, 4-aminosulfonyl[1-(4-N-(5-fluoresceinylthioureido)butyl)]benzamide (3). This probe was designed through an iterative, structure-based approach and was demonstrated to bind tightly only to the zinc-bound holoenzyme (Kd = 2.3 nM) and not the metal-free apoenzyme. Furthermore, the probe exhibits anisotropy that is proportional to the concentration of bound zinc, and this behavior can be exploited in the detection of zinc in the 10−1000 nM range. Strategies for the structure-based design of improved CAII-based metal ion biosensors are considered in view of these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.