Abstract

Dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome, in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases, could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand, harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design, we synthesized a collection of harmine analogues with tunable selectivity toward these two enzymes. Modifications at the 7-position typically decreased affinity for DYRK1A, whereas substitution at the 9-position had a similar effect on MAO-A inhibition but DYRK1A inhibition was maintained. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.