Abstract

Structure-based drug design (SBDD) targeting nucleic acid macromolecules, particularly RNA, is a gaining momentum research direction that already resulted in several FDA-approved compounds. Similar to proteins, one of the critical components in SBDD for RNA is the correct identification of the binding sites for putative drug candidates. RNAs share a common structural organization that, together with the dynamic nature of these molecules, makes it challenging to recognize binding sites for small molecules. Moreover, there is a need for structure-based approaches, as sequence information only does not consider conformation plasticity of nucleic acid macromolecules. Deep learning holds a great promise to resolve binding site detection problem, but requires a large amount of structural data, which is very limited for nucleic acids, compared to proteins. In this study we composed a set of ∼2000 nucleic acid-small molecule structures comprising ∼2500 binding sites, which is ∼40-times larger than previously used one, and demonstrated the first structure-based deep learning approach, BiteNetN, to detect binding sites in nucleic acid structures. BiteNetN operates with arbitrary nucleic acid complexes, shows the state-of-the-art performance, and can be helpful in the analysis of different conformations and mutant variants, as we demonstrated for HIV-1 TAR RNA and ATP-aptamer case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.