Abstract

The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein–ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein–ligand interactions.

Highlights

  • Transmembrane transport proteins selectively aid in the translocation of molecules across biological membranes by binding the substrate molecules followed by a conformational change [1]

  • Genetic variations in the genes that encode these transporters lead to disorders such as cystic fibrosis, cholesterol and bile transport defects, as well as neurological diseases [2]

  • The bile salt export pump (BSEP, gene ABCB11) is a canalicular-specific exporter predominantly expressed in the cholesterol-rich apical membrane of hepatocytes [3]

Read more

Summary

Introduction

Transmembrane transport proteins selectively aid in the translocation of molecules across biological membranes by binding the substrate molecules followed by a conformational change [1]. Members of the ATP-binding cassette (ABC) superfamily facilitate the transport of their solutes by using the energy from hydrolysis of ATP. While some ABC-transporters allow specific passage of inorganic ions, others facilitate ATP-dependent transport of organic compounds including xenotoxins, short peptides, lipids, bile acids, glutathione, and glucuronide conjugates. ABC-transporters affect the absorption, distribution, metabolism, excretion and toxicity of numerous pharmacological agents. Genetic variations in the genes that encode these transporters lead to disorders such as cystic fibrosis, cholesterol and bile transport defects, as well as neurological diseases [2]. The bile salt export pump (BSEP, gene ABCB11) is a canalicular-specific exporter predominantly expressed in the cholesterol-rich apical membrane of hepatocytes [3]. The main function of bile acids is to promote digestion and absorption of dietary fat via

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call