Abstract
The properties of electrons in magnetically ordered crystals are of interest both from the viewpoint of realizing novel topological phases, such as magnetic Weyl semimetals, and from the application perspective of creating energy-efficient memories. A systematic study of symmetry and topology in magnetic materials has been challenging given that there are 1651 magnetic space groups (MSGs). By using an efficient representation of allowed band structures, we obtain a systematic description of several basic properties of free electrons in all MSGs in three dimensions, as well as in the 528 magnetic layer groups relevant to two-dimensional magnetic materials. We compute constraints on electron fillings and band connectivity compatible with insulating behavior. In addition, by contrasting with atomic insulators, we identify band topology entailed by the symmetry transformation of bands, as determined by the MSG alone. We provide an application of our results to identifying topological semimetals arising in periodic arrangements of hedgehog-like magnetic textures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.