Abstract

We have characterized the structural and thermotropic properties of one of the most important lipids in the cell membrane of Staphylococcus aureus, lysyl-dipalmitoylphosphatidylglycerol (lysyl-DPPG). applying differential scanning calorimetry and small- and wide-angle x-ray scattering. Microcalorimetry revealed that under physiological conditions (phosphate buffer, 20 mM NaPi, 130 mM NaCl, pH 7.4), the synthetic lysyl-DPPG resembles the features of the parent dipalmitoylphosphatidylglycerol (DPPG) with respect to its melting behavior. However, in contrast to DPPG, lowering the pH did not significantly affect the main transition temperature (∼40°C) of lysyl-DPPG, which can be explained by its difference in protonization because of the lysine group. X-ray experiments yielded the first information on chain packing and morphology of lysyl-DPPG. We found that lysyl-DPPG forms an interdigitated lamellar phase below the chain-melting transition. This can be explained by the large headgroup area of lysyl-DPPG as a result of its charged lysine group, especially if the headgroup is arranged parallel to the bilayer plane. Additionally, lysyl-DPPG degradation products, such as lysine and free fatty acids, had significant influences on the melting behavior and led to a multicomponent melting transition. Our results indicate that the degradation of lysyl-DPPG takes place mainly during the hydration process but also depends on lipid storage time, pH, and thermal treatment. Detailed temperature-resolved experiments at pH 5.0 demonstrated the formation of a lamellar gel phase with tilted hydrocarbon chains and a ripple phase, coexisting with the interdigitated lysyl-DPPG bilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.