Abstract

Cu1.99A0.01Se (A = Fe, Ni, Mn, In, Zn or Sm) alloys with high thermoelectric performance were prepared through a conventional melting, ball milling and quenching route, followed by a spark plasma sintering technique. Elemental doping did not change the structure type of Cu2Se. All the samples showed p-type conduction. All the doping elements except Indium reduced the electric resistivity and modified the carrier concentration, leading to a significant increase in the power factor. The lattice distortion and point defects due to the substitution of Cu became new phonon scattering centers, leading to a significant decrease in thermal conductivity. All the samples except the In-doped sample obtained better thermoelectric properties compared with the undoped Cu2Se sample. The values of the figure of merit ZT of the samples doped with Zn, Mn, Ni, Fe and Sm were 1.25, 1.28, 1.51, 1.07 and 1.07 at 823 K, respectively. In Cu2−xNixSe system, High ZT value of 1.51 is obtained for the sample of x = 0.0075 and 0.010 at 823 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.