Abstract

We model a disordered planar monolayer of paramagnetic spherical particles, or ferrofluid, as a two-dimensional fluid of hard spheres with embedded three-dimensional magnetic point dipoles. This model, in which the orientational degrees of freedom are three dimensional while particle positions are confined to a plane, can be taken as a crude representation of a colloidal suspension of superparamagnetic particles confined in a water/air interface, a system that has recently been studied experimentally. In this paper, we propose an Ornstein-Zernike integral equation approach capable of describing the structure of this highly inhomogeneous fluid, including the effects of an external magnetic field. The method hinges on the use of specially tailored orthogonal polynomials whose weight function is precisely the one-particle distribution function that describes the surface- and field-induced anisotropy. The results obtained for various particle densities and external fields are compared with Monte Carlo simulations, illustrating the capability of the inhomogeneous Ornstein-Zernike equation and the proposed solution scheme to yield a detailed and accurate description of the spatial and orientational structure for this class of systems. For comparison, results from density-functional theory in the modified mean-field approximation are also presented; this latter approach turns out to yield at least qualitatively correct results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call