Abstract

The mononuclear cobalt hydride complex [HCo(triphos)(PMe3)], in which triphos = PhP(CH2CH2PPh2)2, was synthesized and characterized by X-ray crystallography and by 1H and 31P NMR spectroscopy. The geometry of the compound is a distorted trigonal bipyramid in which the axial positions are occupied by the hydride and the central phosphorus atom of the triphos ligand, while the PMe3 and terminal triphos donor atoms occupy the equatorial positions. Protonation of [HCo(triphos)(PMe3)] generates H2 and the Co(I) cation, [Co(triphos)(PMe3)]+, and this reaction is reversible under an atmosphere of H2 when the proton source is weakly acidic. The thermodynamic hydricity of HCo(triphos)(PMe3) was determined to be 40.3 kcal/mol in MeCN from measurements of these equilibria. The reactivity of the hydride is, therefore, well suited to CO2 hydrogenation catalysis. Density functional theory (DFT) calculations were performed to evaluate the structures and hydricities of a series of analogous cobalt(triphosphine)(monophosphine) hydrides where the phosphine substituents are systematically changed from Ph to Me. The calculated hydricities range from 38.5 to 47.7 kcal/mol. Surprisingly, the hydricities of the complexes are generally insensitive to substitution at the triphosphine ligand, as a result of competing structural and electronic trends. The DFT-calculated geometries of the [Co(triphos)(PMe3)]+ cations are more square planar when the triphosphine ligand possesses bulkier phenyl groups and more tetrahedrally distorted when the triphosphine ligand has smaller methyl substituents, reversing the trend observed for [M(diphosphine)2]+ cations. More distorted structures are associated with an increase in ΔGH-°, and this structural trend counteracts the electronic effect in which methyl substitution at the triphosphine is expected to yield smaller ΔGH-° values. However, the steric influence of the monophosphine follows the normal trend that phenyl substituents give more distorted structures and increased ΔGH-° values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call