Abstract
Windmill palm, a tree species that is native to China, has gained attention with regard to the production of substantial amounts of biomass fibers via yearly pruning. This study investigates the structure and thermal properties of cellulose nanofibrils (CNFs) obtained from windmill palm biomass, with the goal of promoting the usage of these CNFs. Alkali–ultrasound treatments are employed herein to prepare samples of the CNFs. The micromorphology of the prepared samples is observed using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Furthermore, X-ray diffraction analysis is used to examine the aggregated structure of the samples, and thermogravimetric analysis is used to investigate their thermal properties. Results indicate that during alkali hydrolysis when obtaining CNFs, the fiber cell wall exhibits distinct spiral cracking. The diameter of the obtained nanocellulose is <90 nm. The removal of lignin and hemicellulose materials from the fiber cell enhances the crystallinity of CNFs to as high as 60 %, surpassing that of windmill palm single fibers. The thermal decomposition temperatures of the CNFs are found to be 469 °C and 246 °C for the crystalline and amorphous regions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.