Abstract

The structure of multi-component silicate melts and glasses (e.g., Ca-Mg and Ca-Na aluminosilicates) can provide insight into the properties of natural silicate melts and has implications for relevant magmatic processes. In spite of its importance, the atomic and molecular structure of most multi-components (e.g., quaternary) melts and glasses has not been fully described, primarily because of insufficient resolution obtained with conventional spectroscopic and scattering methods; the information obtained by these methods is compromised by severe inhomogeneous peak broadening due to structural complexity. Here we report the first 1 7 O and 2 7 Al 3QMAS NMR spectra for quaternary, Ca-Mg and Ca-Na peralkaline aluminosilicate glasses (i.e., M/Al > 1, M is one monovalent or one-half a divalent cation). These data reveal new details into the molecular structure of multi-component aluminosilicate melts, which include the presence of a substantial fraction of V Al in the Ca-Mg aluminosilicate glasses and I V Al-O- I V Al in both glasses at 1 atm. Traditional models of glass structure do not support the presence of such species given these high-silica, peralkaline compositions. These results suggest that Al avoidance is violated in the multi-component peralkaline aluminosilicate glasses, and that the presence of Mg 2 + in the melts increases the extent of disorder in the melts (compared with Ca 2 + and Na + ). These factors lead to an increase in configurational entropy and the activity coefficients of the oxides, and may provide an explanation for the decrease in viscosity of these complex melts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.