Abstract
Fluorinated organic–inorganic hybrid films were prepared by sol–gel process from tridecafluoroctyltriethoxysilane (PFAS), 3-glycidoxypropyltrimethoxysilane, and tetraethoxysilane (TEOS). It has been found that the fluorinated hybrid films possessed fluorinated side chains originating from PFAS as top layer, and silica network as bottom layer, which had very low surface energy and could be used as water repellent functional coatings. The outermost layer of the water-repellent film may be fully covered by the perfluoroalkyl side chains as the molar ratio of PFAS/TEOS increases up to about 0.005:1. The addition of BPA can enhance the cross-link density of fluorinated hybrid films, and make more perfluoroalkyl groups enriching at the coating film-air interface to lower the surface free energy. However, the improvement of the cross-link density of fluorinated hybrid films tends to exhibit brittleness and micro-cracks. Consequently, it can be concluded that a small BPA additive content is preferred for the formation of fluorinated hybrid films with a smooth surface and less detectable cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.